Մեյոզ, հարցեր և առաջադրանքներ

1․Ներկայացնել մեյոզի փուլերը մանրամասն։

Մեյոզը բաղկացած է 2 հաջորդական բաժանումներից, որոնց միջև կա կարճ ինտերֆազ։

  • I պրոֆազ,, առաջին պրոֆազը շատ բարդ է և կազմված է 5 փուլերից։
  • Լիպտոտենա կամ լիպտոնեմա, քրոմոսոմների փաթեթավորում, ԴՆԹ-ի կոնդենսացիա քրոմոսոմների ձևավորումով՝ բարակ թելերի տեսքով (քրոմոսոները կարճանում են)։
  • Զիգետգենա կամ զիգոնեմա, ընթանում է կոնյուգացիա՝ հոմոլոգ քրոմոսոմների ձևավորված կազմությունների հետ միացումով, որը կազմված է երկու միացած քրոմոսոմներից, որոնք նաև կոչվում են բիվալենտեներ և ընթանում է նրանց հետագա խտացումը։
  • Պահիտենա կամ պահինեմա, (ամենաերկար փուլը), մի քանի մասերում հոմոլոգ քրոմոսոմները իրար են միացվում, ձևավորելով խիազմաներ։ Այնտեղ տեղի է ունենում տրամախաչում՝ հոմոլոգիական քրոմոսոմների միջև մասերի փոխանակում։
  • Դիպլոտենա կամ դիպլոնեմա, տեղի է ունենում քրոմոսոմների մասնակի ապապարուրում, այդ ժամանակ կարող է նաև աշխատել գենոմի մասը, տեղի է ունենում տրանսկրիպցիաների գործընթացներ (ՌՆԹ-ի ձևավորում), տրանսլիացիա (սպիտակուցի սինթեզ); հոմոլոգ քրոմոսոմները դեռևս մնում են միացված։ Որոշ կենդանիների մոտ ձվաբջիջիների քրոմոսոմները մեյոզի այս փուլում ձեռք են բերում լամպաձև խոզանակի նման քրոմոսոմների բնորոշ ձև։
  • Դիակենես, ԴՆԹ-ն մաքսիմալ կերպով կոնդեսացվում է, սինթեզման գործընթացները ավարտվում են, միջուկային թաղանքը լուծվում է; ցենտրիոլները հեռանում են դեպի տարբեր բևեռներ; հոմոլոգիական քրոմոսոմները մնում են միացված։

I պրոֆազից հետո ցենտրիոլները հեռանում են դեպի բջջի բևեռները, ձևավորվում են բաժանման իլիկի թելիկները, միջուկային մեմբրանը և միջուկները քանդվում են։

  • I մետաֆազ, բիվալենտային քրոմոսոմները ձևավորվում են բջջի հասարակածի երկայնությամբ։
  • I անաֆազ, միկրոխողովակները կրճատվում են, բիվալենտները բաժանվում են և քրոմոսոմները հեռանում են դեպի բևեռները։ Կարևոր է նշել, որ քրոմոսոմների կոնյուգացիայից զիտոգենում դեպի բրեռներ են շարժվում ամբողջական քրոմոսոմներ, որոնցից յուրաքանչյուրը բաղկացած են երկու քրոմատիդներից, այլ ոչ թե առանձին քրոմատիդներից, ինչպես միտոզում։
  • I թելոֆազ, քրոմոսոմները ապապարուրվում են և հայտնվում է միջուկային թաղանք։

Մեյոզի երկրորդ բաժանումը տեղի է ունենում առաջինից անմիջապես հետո, առանց ինտերֆազի արտահայտման. S շրջանը բացակայում է, քանի որ երկրորդից առաջ տեղի չի ունենում ԴՆԹ-ի կրկնապատկում։

  • II պրոֆազ, տեղի է ունենում քրոմոսոմների կոնդեսացիա, բջջակենտրոնը բաժանվում է և բաժանման մասերը շարժվում են դեպի բևեռներ, քանդվում է միջուկային թաղանթը, ձևավորվում է իլիկի թելիկներ, որն ուղղահայաց է առաջին բաժանմանը։
  • II մետաֆազ, ունիվալենտային քրոմոսոմները (որոնցից յուրաքանչյուրը բաղկացած է երկու քրոմատիդներից) մակերևույթներից վրա տեղավորվում են «էկվատորում», ձևավորելով այսպես կոչված մետաֆազային շերտ։
  • II անաֆազ, ունիվալենտները բաժանվում են և քրոմատիդները շարժվում են դեպի բևեռներ։
  • II թելոֆազ, քրոմոսոմները ապապարուրվում են և հայտնվում է միջուկային շերտ։

2․Որ բջիջներն են բազմանում մեյոզի ճանապարհով։

3․Ինչով են իրարից տարբերվում մեյոզը և միթոզը։

Վիրուսներ

Վիրուս,ոչ բջջային կառուցվածք ունեցող հարուցիչ, որը բազմանում է միայն կենդանի բջիջների ներսում։ Վիրուսները վարակում են կյանքի բոլոր բջջային ձևերը՝ կենդանիներից ու բույսերից մինչև բակտերիաներ և արքեաներ։

Վիրուսներն առաջին անգամ նկարագրվել են 1892 թվականին Դմիտրի Իվանովսկու կողմից որպես՝ ծխախոտի բույսերը վարակող ոչ բջջային ախտածիններ։ Ծխախոտի խճանկարի վիրուսը հայտնաբերել է Մարտին Բեյերինկը 1898 թվականին[2]։ Այդ ժամանակից ի վեր հայտնաբերվել և մանրամասն նկարագրվել են շուրջ 5000 տեսակի տարբեր վիրուսներ[3], չնայած այն բանին, որ հայտնի են վիրուսների միլիոնավոր ձևեր[4]։ Վիրուսներ հայտնաբերվել են գրեթե բոլոր էկոհամակարգերում և կենսաձևերից ամենաբազմաքանակն են[5][6]։ Վիրուսների մասին գիտությունը վիրուսաբանությունն է, որը մանրէաբանության (միկրոբիոլոգիա) ենթաճյուղերից է։

Վիրուսները բաղկացած են երկու կամ երեք մասերից (վիրիոններից

  • բոլոր վիրուսներն ունեն գենետիկական նյութ՝ ԴՆԹ կամ ՌՆԹ։ Սրանք երկար մոլեկուլներ են, որոնք կրում են գենետիկական տեղեկատվությունը,
  • բոլոր վիրուսներն ունեն սպիտակուցե կապսիդ, որը պաշտպանում է գեները,
  • որոշ վիրուսներ ունեն նաև լիպիդային պատյան, որը շրջապատում է կապսիդը բջջից դուրս գտնվելու ժամանակ։

Վիրուսների ձևերը տարբեր են՝ հասարակ պարուրաձևից և իկոսաեդրից (քսանանիստից) մինչև ավելի բարդ կառույցներ։ Վիրուսի միջին մեծությունը կազմում է բակտերիայի մեծության մոտ 1/100-րդը[7]։ Վիրուսների մեծ մասը շատ փոքր են լուսային մանրադիտակով հայտնաբերվելու համար։

Վիրուսների էվոլյուցիոն ծագումն ամբողջությամբ պարզ չէ։ Հնարավոր է՝ նրանց մի մասը ծագել է բակտերիաներից։ Էվոլյուցիայում վիրուսները խաղում են կարևոր դեր գեների հորիզոնական տեղափոխման մեջ՝ սրանով նպաստելով գենետիկական բազմազանությանը[8]։ Որոշ գիտնականներ վիրուսները համարում են կենդանի ձևեր, քանի որ վերջիններս կրում են գենետիկական նյութ, վերարտադրվում են և բնական ընտրությամբ ենթարկվում էվոլյուցիայի։ Այնուամենայնիվ, վիրուսների մոտ բացակայում են կենդանի օրգանիզմներին բնորոշ որոշ կարևոր հատկանիշներ (ինչպիսին օրինակ բջջային կազմությունն է), որի պատճառով վիրուսներին անվանում են «կյանքի ոչ բջջային ձևեր»։

Վիրուսներ
Կովի ոլոռի խճանկարի վիրուսի տեսքը

Վիրուսների ծագումը՝

Վիրուսները հանդիպում են ամենուր, որտեղ կա կյանք և, ամենայն հավանականությամբ, գոյություն են ունեցել և էվոլուցվել՝ առաջին կենդանի բջիջների հետ միաժամանակ։

Վիրուսների ծագման վարկածները միանշանակ չեն. վիրուսները չեն թողնում բրածո մնացորդներ, ժառանգական հարաբերությունները հնարավոր է պարզել միայն մոլեկուլային ֆիլոգենետիկայով։ Վիրուսների էվոլյուցիայի հիմնական մեթոդը մոլեկուլյար կենսաբանական մեթոդն է՝ վիրուսի ԴՆԹ-ի կամ ՌՆԹ-ի համեմատությունը։

Վիրուսների կենդանի լինելու խնդիրը՝

Վիրուսները բնորոշելիս գիտնականների մի մասն այն սահմանում է որպես կյանքի ձևեր, մյուսները՝ օրգանիզմների հետ փոխհարաբերության մեջ մտնող օրգանական կառույցներ. հստակ մոտեցում դեռ չի ձևավորվել։ Վիրուսները բնորոշվել են որպես «կյանքի սահմանում գտնվող օրգանիզմներ», քանի որ պարունակում են գեներբնական ընտրությամբ ենթարկվում էվոլյուցիայի, կարողանում են վերարտադրվել։ Չնայած որ վիրուսներն ունեն ժառանգական նյութ՝ նրանք չունեն բջջային կառուցվածք, որը համարվում է կենդանի աշխարհի հիմնական հատկությունը։ Վիրուսները չունեն սեփական նյութափոխանակություն, նյութերի սինթեզի համար անհրաժեշտ է տեր բջջի առկայությունը։ Սրա պատճառով վիրուսներն ընդունակ չեն բազմանալ բջջից դուրս։ Հատկանշական է, որ ռիկետսիաներն ու քլամիդիաները նույնպես չեն կարող բազմանալ տեր բջջից դուրս, սակայն համարվում են կենդանի օրգանիզմներ։ Վիրուսները ժառանգում են մուտացիաներ և ենթարկվում են բնական ընտրության. սա է բյուրեղների աճից վիրուսների բազմացման տարբերությունը։ Բջջում վիրուսային մասնիկների ինքնահավաքումը հավելյալ վկայություն է այն մասին, որ կյանքը կարող էր ծագել ինքնահավաքվող օրգանական մոլեկուլներից։ 2013 թվականին ցույց տրվեց, որ որոշ բակտերիոֆագեր ունեն հարմարման ընդունակ իմունային համակարգ[75], որը կողմ փաստարկ է վիրուսների կենդանի լինելու վարկածի օգտին։

Կառուցվածքը՝

Վիրուսներն ունեն ձևերի և չափերի հսկայական բազմազանություն։ Որպես կանոն, վիրուսներն ավելի փոքր են, քան բակտերիաները։ Վիրուսների մեծ մասը 15–300 նանոմետր է (նանոմետրը միլիմետրի մեկ միլիոներորդ մասն է) սահմաններում։ Որոշ ֆիլովիրուսներ ունեն 1400 նմ երկարություն և 80 նմ տրամագիծ։ Մինչև 2013 թվականը ամենամեծ վիրուսը համարվում էր Pandoravirus-ը որն ուներ 1×0,5 մկմ չափեր։ 2014 թվականի մարտի դրությամբ ամենամեծ վիրուսն է համարվել Սիբիրի հավերժական սառույցներում հայտնաբերված Pithovirus-ը, որն ունի 1,5×0,5 մկմ չափեր։ Վիրիոնների մեծ մասը անհնար է տեսնել լուսային մանրադիտակով, դրա համար օգտագործում են էլեկտրոնային մանրադիտակներ։ Որպեսզի վիրուսը ընդգծվի շրջապատող միջավայրի ֆոնի վրա օգտագործում են հատուկ «ներկեր», որոնք ծանր մետաղների աղեր են, ցրում են մակերևույթի էլեկտրոնները։ Այսպիսի վերամշակումը, սակայն, վատացնում է մանր մասնիկների տեսանելիությունը։ Նեգատիվ «ներկման» ժամանակ «ներկվում» է միայն ֆոնը։

Իկոսաեդրալ վիրուսի կառուցվածքային սխեմա՝
А. Լիպիդային պատյան չունեցող վիրուս (օրինակ՝ պիկորնավիրուսներ).
B. Լիպիդային պատյանով վիրուս (օրինակ՝ հերպեսվիրուսներ)
Թվերով ներկայացված են (1) կապսիդ, (2) գենոմային նուկլեինաթթու, (3) կապսոմեր, (4) նուկլեոկապսիդ, (5) վիրիոն, (6) լիպիդային պատյան, (7) պատյանի թաղանթային սպիտակուցները

Վիրուսների գենետիկական բազմազանությունը՝

ՀատկությունՏեսակ
ՆուկլեինաթթուԴՆԹՌՆԹԵվ ՌՆԹ, և ԴՆԹ
ՁևԳծաձևՇղթայաձևՍեգմենտավորված
Շղթաների քանակըՄիաշղթաԵրկշղթաԵրկշղթա, միաշղթա հատվածներով
ԲևեռայնությունԴրական (+)Բացասական (−)Երկբևեռ (+/−)

Բջջի բաժանումը Մեյոզի

Մեյոզը  բջիջների՝ կենդանիների, բույսերի և սնկերի սեռական բազմացման ժամանակ իրականացող բաժանման հատուկ եղանակ։ Մեյոզով կիսվող բջիջներում քրոմոսոմային հավաքակազմի քանակը կրճատվում է երկու անգամ՝ մեկ դիպլոիդ բջջից առաջանում են չորս հապլոիդ բջիջներ։ Մեյոզի արդյունքում առաջացած բջիջները, կամ գամետներ են, կամ սպորներ։ Կենդանիների արական գամետներն անվանում են սպերմատոզոիդներ, իսկ իգականը՝ ձվաբջիջներ։ Մեյոզի ընթացքում երկու անգամ կրճատված քրոմսոմային հավաքակազմ ունեցող գամետները միաձուլվում են բեղմնավորման ընթացքում․ առաջացած զիգոտում քրոմոսոմների սկզբնական քանակը վերականգնվում է։ Մինչ մեյոզի սկիզբը բջջային ցիկլի ընթացքում, յուրաքանչյուր քրոմոսոմի ԴՆԹ-ն կրկնապատկվում է և յուրաքանչյուր քրոմոսոմ ունենում է 2 քույր քրոմատիդ։ Մեյոզի առաջին փուլն սկսվում է այն բջիջների մոտ, որոնց յուրաքանչյուր քրոմոսոմն ունի երկու միանման զույգեր։ Յուրաքանչյուր զույգը բաժանվում է՝ գոյացնելով 2 առանձին հապլոիդ բջիջներ, որոնցից յուրաքանչյուրն ունի մեկ քրոմոսոմ։ Սա տեղի է ունենում մեյոզի առաջին փուլի ընթացքում առաջացած երկու բջիջների մոտ։ Մեյոզը առաջին և երկրորդ բաժանումների միջև ընկած կարճ ինտերֆազի ընթացքում գենետիկական նյութի կրկնապատկում տեղի չի ունենում, որի հետևանքով մեյոզը երկրորդ բաժանման վերջում առաջանում են 4 բջիջներ քրոմոսոմների հապլոիդ հավաքակազմով։

Բջջի բաժանում միտոզ

Բջիջն առաջանում է, աճում, զարգանում և բաժանվում է, կամ էլ մահանում։ Սա բջջի կյանքի օրինաչափությունն է։ Բջիջների առաջացումից մինչև մահը կամ հաջորդ բաժանումը ընկած ժամանակահատվածը բջջի կենսացիկլն է։ Տարբեր բջիջների կյանքի տևողությունը նույնը չէ։ Նյարդային և մկանային բջիջները սաղմնային զարգացման ավարտից հետո դադարում է կիսվել և գործում են օրգանիզմի ամբողջ կյանքի ընթացքում։ Ոսկրուղեղի և էպիթելային հյուսվածքի բջիջներն իրենց ֆունկցիաներն իրականացնելիս արագ մահանում են: Այդ հյուսվածքներում բջիջները բազմանում են։ Էուկարիոտ և պրոկարիոտ բջիջների բաժանումը կատարվում է միտոզի ճանապարհով։ Բջջի նախապատրաստման, նաև միտոզի ընթացքում տեղի ունեցող գործընթացների համախումբը կոչվում է միտոտիկ ցիկլ։ Բջջի կենսացիկլը կազմված է ինտերֆազից և բաժանման փուլերից։ Բաժանման արդյունքում առաջացած նոր բջիջն անցնում է ինտերֆազ և սկսում նախապատրաստվել ԴՆԹ-ի սինթեզին։ Ինտերֆազի այդ փուլը կոչվում է G1 փուլ։ Այդ փուլում բջջում սինթեզվում են ՌՆԹ-ներ և սպիտակուցներ։ Ինտերֆազի միջին ժամանակահատվածում (Տ-փուլ) սկսվում է ԴՆԹ-ի կրկնապատկում է։

ԴՆԹ-ի երկու թելիկները հեռանում են իրարից և յուրաքանչյուրի վրա վերարտադրվում են ԴՆԹ-ի նոր թելիկներ։ ԴՆԹ-ի կրկնապատկման դերը կայանում է նրանում, որ այդ մոլեկուլում գաղտնագրված ժառանգական տեղըկատվությունը անփոփոխ անցնում է հաջորդ սերունդներին։ ԴՆԹ-ի սինթեզից հետո բջիջը սկսում է նախապատրաստվել կիսվելուն ՝ միտոզին, ինչի համար անհրաժեշտ են ցենտրիոլների կրկնապատկում, սպիտակուցների սինթեզ և այլն։ Այդ գործընթացը իրականանում է G2 փուլում։ Միտոզը կազմված է չորս հաջորդական փուլերից։ Այն սկսվում է պրոֆազից, որի ժամանակ կորիզը մեծանում է, քրոմոսոմները պարունակվում են, կարճանում և հաստանում, դադարում է ՌՆԹ-ի սինթեզը։

Բջջային կենտրոնի ցենտրիոլները տարամիացվում են դեպի բջջի բևեռներ: Բջջի պրոֆազի վերջում կորիզաթաղանթը անհետանում է և քրոմոսոմները հայտնվում են ցիտոպլազմում: Միտոզի հաջորդ փուլում ՝ մետաֆազում քրոմոսումները դասավորվում են ցիտոպլազմի հասարակածում ՝ հավասարաչափ հեռանալով բևեռից: Բաժանման թելիկները բոլոր քրոմոսոմների ցենտրիոլները միացնում են բևեռներին, իսկ քրոմոսոմները, որոնք կազմված են քրոմատիդներից, ուղղված են լինում դեպի բջջի հակադիր բևեռները: Յուրաքանչյուր քրոմոսոմի քրոմատիդները առանձնանում են ցենտրոմերի հատվածում և երկու քրոմատիդները վերածվում են ինքնուրույն դուստր քրոմոսոմների: Միտոզի մյուս փուլում ՝ անաֆազում ցենտրոմերներին միացած թելիկները քրոմոսոմների վերածված քրոմատիդներին ձգում են դեպի բևեռներ: Միտոզի վերջին փուլում ՝ թելոֆազում բևեռներում հավաքված քրոմոսոմները միանում են:

Վիրուսներ

Վիրուս, ոչ բջջային կառուցվածք ունեցող հարուցիչ, որը բազմանում է միայն կենդանի բջիջների ներսում։ Վիրուսները վարակում են կյանքի բոլոր բջջային ձևերը՝ կենդանիներից ու բույսերից մինչև բակտերիաներ և արքեաներ։ Վիրուսներն առաջին անգամ նկարագրվել են 1892 թվականին Դմիտրի Իվանովսկու կողմից որպես՝ ծխախոտի բույսերը վարակող ոչ բջջային ախտածիններ։ Ծխախոտի խճանկարի վիրուսը հայտնաբերել է Մարտին Բեյերինկը 1898 թվականին[2]։ Այդ ժամանակից ի վեր հայտնաբերվել և մանրամասն նկարագրվել են շուրջ 5000 տեսակի տարբեր վիրուսներ։ Վիրուսներ հայտնաբերվել են գրեթե բոլոր էկոհամակարգերում և կենսաձևերից ամենաբազմաքանակն են։ Վիրուսների մասին գիտությունը վիրուսաբանությունն է, որը մանրէաբանության (միկրոբիոլոգիա) ենթաճյուղերից է։

Վիրուսները բաղկացած են երկու կամ երեք մասերից (վիրիոններից

  • բոլոր վիրուսներն ունեն գենետիկական նյութ՝ ԴՆԹ կամ ՌՆԹ։ Սրանք երկար մոլեկուլներ են, որոնք կրում են գենետիկական տեղեկատվությունը,
  • բոլոր վիրուսներն ունեն սպիտակուցե կապսիդ, որը պաշտպանում է գեները,
  • որոշ վիրուսներ ունեն նաև լիպիդային պատյան, որը շրջապատում է կապսիդը բջջից դուրս գտնվելու ժամանակ։

Վիրուսների ձևերը տարբեր են՝ հասարակ պարուրաձևից և իկոսաեդրից (քսանանիստից) մինչև ավելի բարդ կառույցներ։ Վիրուսի միջին մեծությունը կազմում է բակտերիայի մեծության մոտ 1/100-րդը։ Վիրուսների մեծ մասը շատ փոքր են լուսային մանրադիտակով հայտնաբերվելու համար։

Վիրուսները տարածվում են բազմաթիվ ճանապարհներով. բույսերի վիրուսները փոխանցվում են բույսից բույս բուսահյութով սնվող միջատների միջոցով (օրինակ՝ լվիճներ), կենդանական վիրուսները փոխանցվում են արնախում միջատների միջոցով։ Այս եղանակով հիվանդությունը փոխանցող օրգանիզմներն անվանվում են վեկտորներ (փոխանցողներ)։ Գրիպի վիրուսները տարածվում են օդակաթիլային եղանակով՝ հազի և փռշտոցի միջոցով։

Վիրուսային վարակը կենդանիների մոտ առաջացնում է իմունային պատասխան, որը սովորաբար ոչնչացնում է վարակող վիրուսին։ Իմունային պատասխան կարող է առաջանալ նաև պատվաստանյութի նկատմամբ, որով հնարավոր է դառնում առաջացնել արհեստական ձեռքբերովի իմունիտետ տվյալ վիրուսային հարուցչի դեմ։ Սակայն շատ վիրուսներ (ՁԻԱՀ-ի և վիրուսային հեպատիտի), կարողանում են խուսափել իմունային պատասխանից՝ առաջացնելով քրոնիկական վարակներ։ Հակաբիոտիկները ոչ մի ազդեցություն չեն ունենում վիրուսների վրա։ Մշակվել և ստեղծվել են որոշ հակավիրուսային դեղամիջոցներ։

Տրանսկրիպցիա

Տրանսկրիպցիագենային էքսպրեսիայի (արտահայտում) առաջին քայլն է, երբ ԴՆԹ-ի որոշակի հատված ՌՆԹ-պոլիմերազի միջոցով պատճենվում է որպես ՌՆԹ (ի-ՌՆԹ)։ Համարվում է մոլեկուլային կենսաբանության կենտրոնական դոգմայի երկրորդ փուլը։

ՌՆԹ-ն (ռիբոնուկլեինաթթու) և ԴՆԹ-ն (դեզօքսիռիբոնուկլեինաթթու) նուկլեինաթթուներ են, որոնք օգտագործում են նուկլեոտիդների ազոտային հիմքերով պայմանավորված կոմպլեմենտրաությունը տեղեկատվության փոխանցման համար։ Տրանսկրիպցիայի ընթացքում ԴՆԹ շղթան կարդացվում է ՌՆԹ-պոլիմերազի օգնությամբ, որի հետևանքով սինթեզվում է ԴՆԹ շղթային կոմպլեմենտար և հակազուգահեռ ՌՆԹ շղթա։

Տրանսկրիպցիան ընթանում է հետևյալ փուլերով՝

  1. մեկ կամ ավելի սիգմա ֆակտորներ միանում են ՌՆԹ-պոլիմերազին, որը թույլ է տալիս վերջինիս միանալ ԴՆԹ-ի որոշակի հաջորդականության՝ պրոմոտորին։
  2. ՌՆԹ-պոլիմերազը ձևավորում է տրանսկրիպցիոն պղպջակ։ Այս արվում է կոմպլեմենտար ԴՆԹ նուկլեոտիդների միջև ջրածնային կապերի քանդման միջոցով։
  3. ՌՆԹ-պոլիմերազը կոմպլեմենտարության սկզբունքի համաձայն սկսում է ռիբոնուկլոտիդներից սինթեզել նոր ՌՆԹ շղթա։
  4. ՌՆԹ-պոլիմերազի օգնությամբ ձևավորվում է ՌՆԹ-ի շաքարա-ֆոսֆատային հենքը։
  5. ՌՆԹ և ԴՆԹ շղթաների միջև գործող ջրածնական կապերը քանդվում են և նոր սինթեզված ՌՆԹ շղթան ազատվում է։
  6. Եթե բջիջն ունի ձևավորված կորիզ, ապա ՌՆԹ-ն ենթարկվում է մշակման (պրոցեսինգ)։ Այս կարող է լինել պոլիադենիլացումկեպինգ և սպլայսինգ։
  7. ՌՆԹ-ն կարող է կամ մնալ կորիզում կամ անցնի ցիտոպլազմա։

ԴՆԹ-ի հատվածը, որից ինֆորմացիան անցնում է ՌՆԹ-ին, կոչվում է «տրանսկրիպցիոն միավոր» և կոդավորում է ամենաքիչը մեկ գեն։ Եթե այդ գենը կոդավորում է սպիտակուց, ապա ՌՆԹ-ն կլինի ի-ՌՆԹ (ինֆորմացիոն ՌՆԹ)։ Վերջինս հետագայում կծառայի կաղապար սպիտակուցի սինթեզի համար։ Սակայն գենը կարող է կոդավորել նաև չկոդավորող ՌՆԹ (ինչպես ՄիկրոՌՆԹ), ռիբոսոմային ՌՆԹ (ռ-ՌՆԹ), փոխադրող ՌՆԹ (փ-ՌՆԹ), կամ մեկ այլ ֆերմենտային հատկությամբ օժտված ՌՆԹ (ռիբոզիմ)[1]։ Ընդհանուր առմամբ ՌՆԹ-ն բջջում կատարում է ահռելի կարևորության ֆունկցիաներ, օգնելով սինթեզել, կարգավորել և մշակել սպիտակուցները։

Վիրուսաբանությունում այս եզրույթը կարող է օգտագործվել նաև բնութագրելու ի-ՌՆԹ-ի սինթեզը ՌՆԹ մոլեկուլից։ Այդ գործընթացը կատալիզվում է վիրուսային ՌՆԹ-ռեպլիկազի կողմից։

Ցիտոպլազմա

Ցիտոպլազմա կամ բջջապլազմաբջջի կիսահեղուկ կենդանի պարունակությունն է՝ բացի բջջակորիզից ու կիսահեղուկ ներքին միջավայրը։ Ցիտոպլազման կարծես հանքային աղերի և տարբեր օրգանական նյութերի ջրային լուծույթ է։

Ցիտոպլազնայի կառուցվածքը

Ցիտոպլազման անգույն, լույսի ճառագայթները ուժեղ բեկող սպիտակուցների և այլ օրգանական նյութերի կոլոիդային լուծույթ է և իր խտությամբ հիշեցնում է թանձր հեղուկ՝ իր մածուցիկությամբ մոտ գլիցերինին։ Կազմված է մեմբրաններից և օրգանոիդներից, որոնց միջակա տարածությունը լցված է ցիտոպլազմայի մատրիքսով՝ հիալոպլազմայով։ Վերջինս որոշակի պայմաններում կարող է փոխակերպվել ավելի պինդ, կարծր վիճակի՝ հել և նորից վերափոխվել հեղուկի՝ զոլ։

Ցիտոպլազմայի ֆունկցիաները ՝

  • կազմում է բջջի ներքին հեղուկ միջավայրը
  • բջջին տալիս է ամրություն, ճկունություն
  • ապահովում է միջավայր քիմիական ռեակցիաների համար
  • ներբջջային նյութերի տեղաշարժի ապահովում
  • միջբջջային նյութափոխանակության ապահովում
  • օրգանոիդների միջև ստեղծում է ֆիզիկոքիմիական և ֆերմենտային կապեր
Ցիտոպլազմա, բջջի հիմնական օրգանոիդները — Ասյա Բանդուրյան

(1) Կորիզակ (2) Բջջակորիզ (3) Ռիբոսոմ (4) Ներառուկ (5) Հատիկավոր էնդոպլազմային ցանց (6) Գոլջիիապարատ (7) Բջջակմախք (8)Հարթ էնդոպլազմայինցանց (9) Միտոքոնդրիումներ (10) Վակուոլներ (11) Ցիտոպլազմա (12) Լիզոսոմ (13) Ցետրոլ։

Նուկլեինաթթուներ

Նուկլեինաթթուն բարձրամոլեկուլային օրգանական միացություն է, որը կազմված է նուկլեոտիդներից։ Նուկլեյնաթթուներ ԴՆԹ և ՌՆԹ առկա են բոլոր կենդանի օրգանիզմների բջիջներում։ Նրանք կարևորագույն դեր են խաղում ժառանգական ինֆորմացիայի պահպանման, փողանցման և իրականացման մեջ։ Պարունակվում են բոլոր օրգանիզմների բջիջներում։ Նուկլեինաթթուները 1868 թվականին հայտնաբերել է շվեյցարացի գիտնական Ֆրիդրիխ Միշերը։ Տարբերում են նուլեինաթթուների 2 գլխավոր տիպ՝ ՌՆԹ և ԴՆԹ։  Նուկլեինաթթուների մոլեկուլներընուկլեոտիդներից բաղկացած, երկար պոլիմերային շղթաներ են։ Որպես ածխածին ՌՆԹ-ի կազմի մեջ մտնում է ռիբոզը, իսկ ազոտային հիմքերն են՝ ադենինըգուանինըցիտոզինը և ուրացիլը, իսկ ԴՆԹ-ն կազմում են համապատասխանաբար դեզօքսիռիբոզը և ադենինը, գուանինը, ցիտոզինը, թիմինը։ Նուկլեինաթթուներում փոքր քանակությամբ հանդիպում են նաև պուրինների և պիրիմիդինների այլ ածանցյալներ՝ մինորային թթվեր։

ԴՆԹ-ի պոլիմերային շղթայի հատված

Սպիտակուցներ

Առաջնային կառուցվածք

Առաջնային կառուցվածքը պոլիպեպտիդային շղթայում ամինաթթվային մնացորդների հաջորդականությունն է։ Սպիտակուցի առաջնային կառուցվածքը, որպես կանոն, նկարագրում են մեկ կամ երեք տառերից բաղկացած նշանակումների օգտագործմամբ։

Առաջնային կառուցվածքի կարևոր հատկություններից է կոնսերվատիվ միտումը, որը որոշակի գործառույթ ունեցող ամինաթթվային մնացորդների խմբերի կայուն ամբողջությունն է և հանդիպում է շատ սպիտակուցներում։ Կոնսերվատիվ միտումները պահպանվում են տեսակների էվոլյուցիայի ընթացքում։ Դրանք օգտագործվում են անհայտ սպիտակուցի ֆունկցիան պարզելու համար[23]։ Սպիտակուցների ամինաթթվային կազմի համանմանությամբ կարելի է պարզել տաքսոնների միջև գոյություն ունեցող էվոլյուցիոն կապերը։

Սպիտակուցի առաջնային կառուցվածքը հնարավոր է որոշել սպիտակուցների սեքվենավորման կամ մՌՆԹ-ի առաջնային կառուցվածքի միջոցով՝ օգտագործելով գենետիկական գաղտնագիրը։

Երկրորդային կառուցվածք

Երկրորդային կառուցվածքը սպիտակուցի պոլիպեպտիդային շղթայի հատվածների տեղային դասավորությունն է, որը կայունացվում է ջրածնային կապերի միջոցով։ Ստորև ներկայացված են սպիտակուցի երկրորդային կառուցվածքի տիպերը[22]՝

  • α-պարույր՝ մոլեկուլի երկար առանցքի շուրջը խիտ դասավորված են պարույրները, մեկ պարույրում կա 3,6 ամինաթթվային մնացորդ, մեկ քայլը 0,54 նմ է (մեկ ամինաթթվային մնացորդը՝ 0,15 նմ)[24]։ Պարույրը պահպանում է իր ձևը պեպտիդային խմբերի H և O ատոմների միջև առաջացող պեպտիդային կապերով։ α-պարույրը կարող է լինել աջ և ձախ պարուրված, սպիտակուցներում գերակշռում է աջ պարուրված տարբերակը։ Պարույրը քանդվում է գլուտամինաթթվիլիզինիարգինինի էլեկտրոստատիկ փոխհարաբերությունը։ Ասպարգինիսերինիթրեոնինի և լեյցինի մնացորդները միմյանց մոտ դասավորվելիս կարող են խանգարել պարույրի ձևավորմանը, պրոլինի մնացորդն առաջացնում է շղթայի ծռում, որը նույնպես քանդում է α-պարույրը։
  • β-պարույր (շարժական շերտեր)՝ մի քանի կեռմանաձև պոլիպեպտիդային շղթաներ, որոնցում ջրածնային կապեր առաջանում են հադնիպակաց շղթաների կամ միմյանցից հեռու դասավորված ամինաթթվային մնացորդների միջև[25]։ Այս շղթաներն իրենց N-ծայրով ուղղված են հակառակ (հակազուգահեռ կողմնորոշում)։ β-պարույրի առաջացման համար կարևոր կողմնային ամինաթթվային մնացորդներից են գլիցինն ու ալանինը։
  • π-պարույր,
  • 310-պարույր,
  • չկարգավորված հատվածներ։

Երրորդային կառուցվածք

Երրորդային կառուցվածքը պոլիպեպտիդային շղթայի տարածական դասավորությունն է։ Այն կազմված է երկրորդային կառուցվածքի տարրերից, որոնք կայունացվում են տարբեր փոխհարաբերությունների, հատկապես հիդրոֆոբ փոխհարաբերության շնորհիվ։ Կայուն երրորդային կառուցվածքում կան՝

  • կովալենտ կապեր ցիստեինի երկու մնացորդների միջև՝ դիսուլֆիդային կապեր,
  • իոնային կապեր հանդիպակաց դասավորված ամինաթթվային մնացորդների երկու խմբերի միջև,
  • ջրածնային կապեր,
  • հիդրոֆոբ փոխհարաբերություն։ Սպիտակուցի մոլեկուլը ջրի հետ փոխհարաբերվելիս ընդունում է այնպիսի կառուցվածք, որտեղ ոչ բևեռային ամինաթթուների կողմնային խմբերը մեկուսանում են ջրային լուծույթից, իսկ բևեռային խմբերը՝ հայտնվում մոլեկուլի մակերեսին։

Սպիտակուցների երրորդային կառուցվածքի ուսումնասիրությունը ցույց է տվել, որ երկրորդային և ատոմային տարածական կառուցվածքների միջև կարելի է առանձնացնել նաև երրորդ մակարդակը՝ կառուցվածքային դրդապատճառը։ Այն որոշվում է սպիտակուցի դոմենի սահմաններում երկրորդային կառուցվածքի տարրերի (α-պարույր և β-պարույր) միմյանց նկատմամբ ունեցած դասավորությամբ։ Սպիտակուցի դոմենը կոմպակտ գլոբուլին է, որը կարող է ինքնուրույն գոյություն ունենալ կամ մտնել ավելի մեծ սպիտակուցի կազմության մեջ։ Պատկերի աջում պատկերված գլոբուլյար սպիտակուցի՝ տրիոզոֆոսֆատիզոմերազի կառուցվածքային դրդապատճառն անվանվում է α/β-գլան։ 8 զուգահեռ դասավորված β-պարույրներն առաջացնում են β-գլան, որն իր հերթին գտնվում է 8 α-պարույրներից կազմված մեկ այլ գլանի ներսում։ Այսպիսի կառուցվածք ունեն սպիտակուցների 10%-ը:

Բնափոխում

Սպիտակուցի բնափոխումը կամ դենատուրացիան երկրորդային, երրորդային կամ չորրորդային կառուցվածքի կորստի հետ կապված ցանկացած փոփոխությունն է, որը հանգեցնում է սպիտակուցի ակտիվության և/կամ ֆիզիկաքիմիական հատկությունների փոփոխությանը։ Որպես կանոն, սպիտակուցները օրգանիզմում բավականին կայուն են և հարմարված օրգանիզմի ներքին պայմաններին[8]։ Այս պայմանների կտրուկ փոփոխությունը բերում է սպիտակուցի բնափոխմանը։ Բնափոխման պատճառները կարող են լինել մեխանիկական (կտրուկ տեղափոխում, թափահարում), ֆիզիկական (տաքացում, սառեցում, ուլտրաձայն, ճառագայթում) և քիմիական (թթուներ և հիմքեր, մակերեսային ակտիվ նյութերմիզանյութ):

Սպիտակուցի բնափոխումը կարող է լինել նաև ամբողջական կամ մասնակի, դարձելի և անդարձելի։ Անդարձելի բնափոխման ամենատարածված օրինակը ձվի սպիտակուցի բնափոխումն է բարձր ջերմաստիճանի ազդեցությամբ։ Թափանցիկ օվալբումին սպիտակուցը խտանում է, դառնում անլուծելի և անթափանց։ Բնափոխումը որոշ դեպքերում դարձելի է, ինչպես, օրինակ, ջրում լուծվող սպիտակուցների՝ ամոնիումի աղերով նստեցման և մաքրման մեջ կիրառման ժամանակ: